### Session A: Research - SCC 316, cont.

| 1:25-1:50p | Xiaonan Lu, Ph.D.<br>Washington State University<br>Garlic-derived organosulfur compounds fight foodborne<br>pathogens                                            | 9:00a            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1:50-2:15p | <b>Mo Li, Ph.D.</b><br>University of Washington<br>Type VI secretion effector recognition by a cognate immunity<br>protein-Tsi2.                                  | 9:30a<br>10:00a  |
| 2:15-2:40p | Xuan Qin, Ph.D.<br>Childrens's Hospital<br><i>Pseudomonas aeruginosa</i> syntrophy in chronically colonized<br>cystic fibrosis airways.                           | 10:30a<br>10:45a |
| 2:40-3:00p | Break                                                                                                                                                             |                  |
| 3:00-3:25p | <b>Brett Mellbye</b><br>Oregon State University<br>You are what you eat: Nutrient and growth-rate control of quorum<br>sensing in <b>Pseudomonas aeruginosa</b> . | 11:15a           |
| 3:25-3:50p | <b>Curtis Moon</b><br>Central Washington University<br>Arsenate resistance genes in alkaliphiles from Soap Lake                                                   | 12:00p<br>1:00p  |
| 3:50-4:10p | <b>Jonathan Pruneda</b><br>University of Washington<br>Activation of the <b>Shigella</b> effector OspG requires binding to host<br>cell ubiquitination machinery  | 1:45p            |
| 4:10-4:30p | <b>Chris Whidbey</b><br>University of Washington<br>Penetration of human placental membranes by Group B<br>Streptococci                                           |                  |
| 4:30-4:50p | <b>Sarah Wilson</b><br>University of Washington<br>Evaluating interactions between epithelial cells and enteric<br>pathogens in a small intestinal organoid model |                  |
| 5:00-6:30p | Posters<br>Foyer of South Campus Center                                                                                                                           |                  |

### Session B: Clinical - SCC 303

- William Glover, Ph.D Washington State Public Health Laboratories Vibrio Parahemolyticus: Tales from the Half Shell
- Dr. Perez Osorio Washington State Public Health Laboratories New Surveillance Tools to Aid Tuberculosis Control
- Mitchell Woodberry, Ph.D. University of Washington The legion of doom!

### Break

4

- Raquel Martinez. Ph.D. University of Washington Rapid Bacterial Diagnostics
- Carl Wigren, MD Forensic Pathology Autopsy Services, LLC Dead Ahead: an autopsy conundrum

### Lunch

- Art Braden, Ph.D. **Roche Diagnostics** Applying multiplex testing to HPV screening: Enhancing assay design for clinical benefit
- Steve Salipante, MD, PhD Bellingham Research Institute Rapid next-generation sequencing for molecular diagnosis of complex specimens



## University of Washington

November 9-10, 2012

**Opening Session** and Reception

William H. Foege Genome Sciences Building

South Campus Center Sessions Rm 303 & 316

# **Keynote Speaker**

## Nancy Freitag, Ph.D.

Deptartment of Microbiology and Immunology, University of Illinois at Chicago College of Medicine

From soil to cytosol: the pathogenic transition of the environmental bacterium Listeria monocytogenes

sponsored by









5

### **SCHEDULE OF EVENTS**

Friday November 9th

#### 6:00-6:30p Registration

Foege Foyer William H. Foege Genome Sciences Building

#### **Opening Remarks** 6:30p

Foege Auditorium William H. Foege Genome Sciences Building

Steve Libby, Ph.D. President, NW Branch of the American Society for Microbiology, University of Washington

### **Keynote Speaker**

Nancy Freitag, Ph.D. Dept. of Microbiology and Immunology Univ. of Illinois at Chicago College of Medicine From soil to cytosol: the pathogenic transition of the environmental bacterium Listeria monocytogenes

#### 7:30-9:00p **Opening Reception**

Vista Cafe, First Floor William H. Foege Genome Sciences Building

### Saturday November 10th

8:00-8:30a Registration South Campus Center SCC-316

1

- **Session A: Research** 8:30a-12:10p **Session B: Clinical**
- 12:10-1:00p Lunch Foyer of South Campus Center
- Session A: Research 1:00-5:00p
- Session B: Clinical Microbiology 1:00-3:00p
- Poster Session 5:00-6:30p Foyer of South Campus Center

### Session A: Research - SCC 316

Mike Konkel, Ph.D 8:30-8:55a Washington State University Campylobacter jejuni takes control: effector-driven manipulation of host cell signaling 8:55-9:20a Rosalind Bilharz, Ph.D. Pacific Lutheran University A Tale of Two NS1s: A Comparison of the Host Type I Interferon Response to the 1918 'Spanish Flu' and the 2009 'Swine Flu' 1 Josh Woodward, Ph.D. 9:20-9:45a University of Washington Defining the critical role of c-di-AMP in Listeria monocytogenes physiology and pathogenesis

## Session A: Research - SCC 316, cont.

2

| 9:45-10:10a  | Jay Mellies<br>Reed College<br>The plasmid encoded PerC stimulates central metabolism in<br>enteropathogenic <b>E. coli</b>                                                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:10-10:30a | Break                                                                                                                                                                                                                                                                              |
| 10:30-10:55a | Marina Kalyuzhnaya, Ph.D.<br>University of Washington<br>Methanotrophy revisited: C-1-T0-Cn plus energy. Is it possible?                                                                                                                                                           |
| 10:55-11:20a | Elaine Frawley, Ph.D.<br>University of Washington<br>The Major Facilitator Superfamily Pump IceT Exports Iron Citrate<br>to Regulate Metabolism and Stress Resistance                                                                                                              |
| 11:20-11:45a | Marion Brodhagen, Ph.D.<br>Western Washington University<br>Espionage and counter-intelligence in Aspergillus and aflatoxin                                                                                                                                                        |
| 11:45-12:10p | <b>Svetlana Yurgel, Ph.D.</b><br>Washington State University<br><i>Sinorhizobium meliloti</i> nitrogen stress response: role in<br><i>Rhizobium–legume association</i>                                                                                                             |
| 12:10-1:00p  | Lunch                                                                                                                                                                                                                                                                              |
|              | Rebecca Achterman, Ph.D.<br>Western Washington University<br>Crowd Funding in the Sciences                                                                                                                                                                                         |
|              | <b>Gita Bangera, Ph.D.</b><br>Bellevue College<br>Research in the classroom: Implementing NSF's Vision and<br>Change Recommendations                                                                                                                                               |
| 1:00-1:25p   | <b>Charlotte Majerczyk, Ph.D.</b><br>University of Washington<br><i>Quorum sensing in B. thailandensis, B. pseudomallei</i> and <i>B.</i><br><i>mallei-</i> adaptation of bacterial signaling in the related free-living<br>saprophyte, opportunist, and host-restricted pathogen. |